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Additional analysis suggested in response to differences in variance estimates 
between Sherley (2016) and Ross-Gillespie & Butterworth (2016). 
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Sherley (2016) outlined a Bayesian approach to understand the effect sizes, uncertainty and 
demographic impact associated with purse-seine fishing closures around African penguin colonies. 
Inter alia, the approach in Sherley (2016) used linear mixed effects models to analyse 9,436 
individual chick condition observations. Linear mixed effect models were used because of “the 
flexibility they offer in modeling the within-group correlation often present in grouped data” (Pinhero & 
Bates 2000) because they can “account for dependencies within hierarchical groups through the 
introduction of random-effects” (Zuur et al. 2009). Their use is now commonplace in ecological 
analyses and they have been advocated for and used in fisheries management for some time 
(Venables & Dichmont 2004; Miller & Anderson 2004; Punt et al. 2006; Thorson & Minto 2015; 
Thorson et al. 2016), including by members of MARAM (e.g. Brandão et al. 2004). To quote 
Venables & Dichmont (2004), writing over a decade ago: “One of the most important benefits of using 
mixed models is their capacity to ‘borrow strength’ from one part of the data to another, thus often 
providing a more realistic analysis of large fragmentary data sets, which are the norm in fisheries 
research”. Or as Punt et al. (2006) put it: “there is value in using a mixed-effects approach to allow 
the years for which the dataset is large to ‘provide support’ for the years for which the data are 
sparse”. 
 
In contrast, Butterworth (2016) has argued that there is “nothing to be gained in terms of improved 
estimation performance by fitting to the individual data for each year rather than to their means”, that 
“one cannot assume that a random effects estimator will fully correct for non-independence of data; 
rather it seems likely to yield estimates of standard errors for parameters which are negatively biased 
to some extent” and based on a simulated dataset with “fairly strong non-independence” ignoring the 
non-independence in the data would yield standard error estimates “an order of magnitude too 
small”. In other words, there is a concern that the smaller standard error estimates for the effect of 
closure on chick condition in Sherley (2016) compared to those in Ross-Gillespie & Butterworth 
(2016) results not from the additional power gained by using mixed models, but rather because the 
analysis in Sherley (2016) fail to appropriately correct variance estimates for the effects of non-
independence in the underlying data. 
 
Unfortunately, a number of technical issues make it difficult to compare the standard error estimates 
associated with effect sizes (𝜇!"#"!"  in Ross-Gillespie & Butterworth 2016) between the two analyses 
directly. Notably, Ross-Gillespie & Butterworth (2016) worked in log-space on the aggregated means 
and Sherley (2016) worked in normal space on the raw data. The datasets used also differed: 2004, 
2008–2013 in Ross-Gillespie & Butterworth (2016) and 2008–2015 in Sherley (2016). Thus as 
Butterworth (2016) notes “actual truly comparable results have yet to be calculated”, but a number of 
suggestions have been made by members of the Penguin Task Team as to how we might determine 
whether any differences will greatly impact the key results from these analyses: 
 
(1) Mike Burgh suggested comparing results from Sherley (2016), with those using a shorter (than 
one month) time period for the lowest level of the hierarchical random effect, specifically a two-week 
period. In addition, Doug Butterworth suggested (2) omitting biomass estimates as explanatory 
variables; refitting the model to the time range of data used in in Ross-Gillespie & Butterworth (2016), 
taking values from the joint posterior distribution for the differences between open and closed years 
at each island, logging each value in each pair, taking the differences for each pair, and then 
computing the standard deviation of those differences and (3) comparing directly between models fit 
to the same disaggregated data and the corresponding aggregated means. To address (3), I used 
the ‘nlme’ library in R. 
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Here, I have dealt with all four suggestions, but have used the entire joint posterior (rather than 
sample from it) and have also (4) repeated Doug’s first suggestion (2) with the data used in the 
original Sherley (2016) model (2008–2015 for both islands). Details of the Bayesian hierarchical 
models used can be found in Sherley (2016) and are not repeated here. 
 
Results 
Note I have used closed years as the baseline here so that negative effects sizes from all models 
correspond to negative estimates in Ross-Gillespie and Butterworth (2016) and represent high chick 
condition in closed years. 
 
Using the same aggregated data as Ross-Gillespie and Butterworth (2016) and working with the 
natural log of the condition data, I obtain near identical estimates (compare A and 3 below), with the 
remaining difference likely due to rounding. 
 
Using the same data range (2004, 2008–2013) as Ross-Gillespie and Butterworth (2016), but refitting 
the model in Sherley (2016) yielded essentially unchanged results, though the effect size at Dassen 
is closer to zero (compare B and C below), and the precision estimates still appear an order of 
magnitude smaller than in Ross-Gillespie and Butterworth (2016; compare A and C); but note, the 
estimates in A are in log space and those from B and C in normal space. 
 
Reducing the time-step used as the lowest level of the hierarchical random effect to fortnight (still 
using 2004, 2008–2013 data) produced essentially unchanged precision estimates in normal space 
(compare C and 1 in the table below) and log space (compare 1 and 2), though both point estimates 
are now negative as in Ross-Gillespie and Butterworth (2016). 
 
Finally, Doug’s suggestion of calculating the standard deviation of the differences of the logged 
posterior distribution for open and closed years yielded precision estimates that were no longer an 
order of magnitude smaller than those of Ross-Gillespie and Butterworth (2016), but about 50% 
smaller (compare A and 2 in the table below). This was not greatly influenced by which data time 
period was used (compare 2 and 4, and both with A in the Table below). 
 

Source/Data range Model type Data type Island Effect size SE/SD 

(A) Ross-Gillespie and 
Butterworth 2016 from Table 61 

Log 
LMM(?) Agg. 

Dassen −0.08 0.22 

Robben −0.13 0.20 

(B) Sherley 2016 (results from fit 
with biomass omitted)2 

LMM 
(JAGS) Disagg. 

Dassen 0.02 0.02 

Robben −0.11 0.03 

(C) As Sherley 2016, but fit to 
2004, 2008–2013 data2 

LMM 
(JAGS) Disagg. 

Dassen 0.003 0.03 

Robben −0.12 0.03 

(1) Adding fortnight to the 
hierarchical random effect 

(Year/Month/Fortnight)1 and 2 shown 

LMM 
(JAGS) Disagg. 

Dassen −0.05 0.032 (0.101) 

Robben −0.06 0.032 (0.091) 
(2) As Sherley 2016, but fit to 
2004, 2008–2013 data, SD of 

difference of logged joint 
posterior1 

LMM 
(JAGS) Disagg. 

Dassen 0.003 0.10 

Robben −0.12 0.09 

(3) 2004, 2008–2013 aggregated 
data, no biomass, year random 

effect1 

Log LMM  
(nlme) Agg. 

Dassen −0.08 0.23 

Robben −0.12 0.20 

(4) As (2) but fit to 2008–2015 
disaggregated data1 

LMM 
(JAGS) Disagg. 

Dassen 0.02 0.09 

Robben −0.11 0.08 
Notes: 1. Results are in log space; 2. Results are in normal space; Agg. = aggregated data, meaning that the annual means 
are used; Disagg. = disaggregated data, meaning each of the original observations made in the field is used; nlme = model 
fit using the nlme library in R; JAGS =  model fit using Bayesian inference and Just Another Gibbs Sampler (JAGS); LMM = 
linear mixed model; Log LMM linear mixed model on log transformed data. 
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